Recurrences and Legendre Transform

نویسنده

  • Volker Strehl
چکیده

A binomial identity ((1) below), which relates the famous Apéry numbers and the sums of cubes of binomial coefficients (for which Franel has established a recurrence relation almost 100 years ago), can be seen as a particular instance of a Legendre transform between sequences. A proof of this identity can be based on the more general fact that the Apéry and Franel recurrence relations themselves are conjugate via Legendre transform. This motivates a closer look at conjugacy of sequences satisfying linear recurrence relations with polynomial coefficients. The rôle of computer-aided proof and verification in the study of binomial identities and recurrence relations is illustrated, and potential applications of conjugacy in diophantine approximation are mentioned. This article is an expanded version of a talk given at the 29. meeting of the Séminaire Lothringien de Combinatoire, Thurnau, september 1992.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Apery Sequences and Legendre Transforms

A lower bound for the minimal length of the polynomial recurrence of a binomial sum is obtained. 2000 Mathematics subject classification: primary 11B37. A sequence an satisfies a polynomial recurrence of length r and degree m if there exist r polynomials Po, Pu ... , Pr_u with degree at most m such that (1) Po(n)an + P x { n ) a n ^ + ••• + P r ^ ( n ) a n r = 0 for n > r. For a sequence an the...

متن کامل

A Fast, Simple, and Stable Chebyshev-Legendre Transform Using an Asymptotic Formula

A fast, simple, and numerically stable transform for converting between Legendre and Chebyshev coefficients of a degree N polynomial in O(N(logN)2/ log logN) operations is derived. The basis of the algorithm is to rewrite a well-known asymptotic formula for Legendre polynomials of large degree as a weighted linear combination of Chebyshev polynomials, which can then be evaluated by using the di...

متن کامل

Characterization of a simple communication network using Legendre transform

We describe an application of the Legendre transform to communication networks. The Legendre transform applied to max-plus algebra linear systems corresponds to the Fourier transform applied to conventional linear systems. Hence, it is a powerful tool that can be applied to max-plus linear systems and their identification. Linear max-plus algebra has been already used to describe simple data co...

متن کامل

Comparative Study of Dct and Discrete Legendre Transform for Image Compression

-The discrete Legendre transform is compared to the discrete cosine transform (DCT), which is based on Chebyshev polynomials, in terms of image compression efficiency. Using standard test images in various image compression configurations, the DCT is found to perform marginally better than the discrete Legendre transform in all cases examined. A simplified fundamental matrix theory for construc...

متن کامل

On the generalized Legendre transform and monopole metrics

In the generalized Legendre transform construction the Kähler potential is related to a particular function. Here, the form of this function appropriate to the k-monopole metric is calculated from the known twistor theory of monopoles.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1992